Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes.

نویسندگان

  • E van den Akker
  • C Fromental-Ramain
  • W de Graaff
  • H Le Mouellic
  • P Brûlet
  • P Chambon
  • J Deschamps
چکیده

We present a detailed study of the genetic basis of mesodermal axial patterning by paralogous group 8 Hox genes in the mouse. The phenotype of Hoxd8 loss-of-function mutants is presented, and compared with that of Hoxb8- and Hoxc8-null mice. Our analysis of single mutants reveals common features for the Hoxc8 and Hoxd8 genes in patterning lower thoracic and lumbar vertebrae. In the Hoxb8 mutant, more anterior axial regions are affected. The three paralogous Hox genes are expressed up to similar rostral boundaries in the mesoderm, but at levels that strongly vary with the axial position. We find that the axial region affected in each of the single mutants mostly corresponds to the area with the highest level of gene expression. However, analysis of double and triple mutants reveals that lower expression of the other two paralogous genes also plays a patterning role when the mainly expressed gene is defective. We therefore conclude that paralogous group 8 Hox genes are involved in patterning quite an extensive anteroposterior (AP) axial region. Phenotypes of double and triple mutants reveal that Hoxb8, Hoxc8 and Hoxd8 have redundant functions at upper thoracic and sacral levels, including positioning of the hindlimbs. Interestingly, loss of functional Hoxb8 alleles partially rescues the phenotype of Hoxc8- and Hoxc8/Hoxd8-null mutants at lower thoracic and lumbar levels. This suggests that Hoxb8 affects patterning at these axial positions differently from the other paralogous gene products. We conclude that paralogous Hox genes can have a unique role in patterning specific axial regions in addition to their redundant function at other AP levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hox patterning of the vertebrate rib cage.

Unlike the rest of the axial skeleton, which develops solely from somitic mesoderm, patterning of the rib cage is complicated by its derivation from two distinct tissues. The thoracic skeleton is derived from both somitic mesoderm, which forms the vertebral bodies and ribs, and from lateral plate mesoderm, which forms the sternum. By generating mouse mutants in Hox5, Hox6 and Hox9 paralogous gr...

متن کامل

Axial and appendicular skeletal transformations, ligament alterations, and motor neuron loss in Hoxc10 mutants

Vertebrate Hox genes regulate many aspects of embryonic body plan development and patterning. In particular, Hox genes have been shown to regulate regional patterning of the axial and appendicular skeleton and of the central nervous system. We have identified patterning defects resulting from the targeted mutation of Hoxc10, a member of the Hox10 paralogous family. Hoxc10 mutant mice have skele...

متن کامل

Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton.

Mice in which all members of the Hox10 or Hox11 paralogous group are disrupted provide evidence that these Hox genes are involved in global patterning of the axial and appendicular skeleton. In the absence of Hox10 function, no lumbar vertebrae are formed. Instead, ribs project from all posterior vertebrae, extending caudally from the last thoracic vertebrae to beyond the sacral region. In the ...

متن کامل

Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning.

Using gene targeting, we have produced mice with a disruption of Hoxa-9 or Hoxd-9, two paralogous Abdominal B-related genes. During embryogenesis, these genes are expressed in limb buds and along the vertebral axis with anterior expression boundaries at the level of prevertebra #20 for Hoxa-9 and #23 for Hoxd-9. Skeletal analysis revealed homeotic transformations corresponding to anteriorisatio...

متن کامل

Additive and global functions of HoxA cluster genes in mesoderm derivatives.

Hox genes encode transcription factors that play a central role in the specification of regional identities along the anterior to posterior body axis. In the developing mouse embryo, Hox genes from all four genomic clusters are involved in range of developmental processes, including the patterning of skeletal structures and the formation of several organs. However, the functional redundancy obs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 128 10  شماره 

صفحات  -

تاریخ انتشار 2001